Cell state dependent effects of Bmal1 on melanoma immunity and tumorigenicity

Zhang X, Pant SM, Ritch CC, Tang H-Y, Shao H, Dweep H, Gong Y-Y, Brooks R, Brafford P, Wolpaw AJ, Lee Y, Weeraratna A, Sehgal A, Herlyn M, Kossenkov A, Speicher D, Sorger PK, Santagata S, Dang CV.

Nature Communications. 2024 Jan 20, 15(1):633. PMID: 38245503

The circadian clock regulator Bmal1 modulates tumorigenesis, but its reported effects are inconsistent. Here, we show that Bmal1 has a context-dependent role in mouse melanoma tumor growth. Loss of Bmal1 in YUMM2.1 or B16-F10 melanoma cells eliminates clock function and diminishes hypoxic gene expression and tumorigenesis, which could be rescued by ectopic expression of HIF1α in YUMM2.1 cells. By contrast, over-expressed wild-type or a transcriptionally inactive mutant Bmal1 non-canonically sequester myosin heavy chain 9 (Myh9) to increase MRTF-SRF activity and AP-1 transcriptional signature, and shift YUMM2.1 cells from a Sox10-high to a Sox9-high immune resistant, mesenchymal cell state that is found in human melanomas. Our work describes a link between Bmal1, Myh9, mouse melanoma cell plasticity, and tumor immunity. This connection may underlie cancer therapeutic resistance and underpin the link between the circadian clock, MRTF-SRF and the cytoskeleton.

Publication Data Access


Curated Minerva Stories

Curated stories provide access to images that have undergone a quality control step to remove failed markers, ensure appropriate channel intensity settings, and provide metadata about the underlying sample and image. Click the Minerva story icon for an interactive view of the full-resolution images.

Data image
Cell State Dependent Effects of Bmal1 on Melanoma Immunity and Tumorigenicity

Data Access

Instructions to access data will be posted to the Zenodo repository associated with this publication.